Parallelizing LU Factorization

نویسنده

  • Scott Ricketts
چکیده

Systems of linear equations can be represented by matrix equations of the form A~x = ~b. LU Factorization is a method for solving systems in this form by transforming the matrix A into a form that makes backwards and forward susbstitution feasible. A common algorithm for LU factorization is Gaussian elimination, which I used for my serial and parallel implementations. I investigated using asynchronous communication to overlap communication and computation for a pipelining effect. I found that this did not provide an improvement in performance. I also compared several 1-dimensional partitioning techniques and found the best performance from the row cyclic layout. I believe that to complete this investigation, it will be necessary to complete a 2dimensional blocked cyclic layout and to incorporate the BLAS libraries for fast matrixmatrix multiply.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE USE OF SEMI INHERITED LU FACTORIZATION OF MATRICES IN INTERPOLATION OF DATA

The polynomial interpolation in one dimensional space R is an important method to approximate the functions. The Lagrange and Newton methods are two well known types of interpolations. In this work, we describe the semi inherited interpolation for approximating the values of a function. In this case, the interpolation matrix has the semi inherited LU factorization.

متن کامل

On the WZ Factorization of the Real and Integer Matrices

The textit{QIF}  (Quadrant Interlocking Factorization) method of Evans and Hatzopoulos solves linear equation systems using textit{WZ}  factorization. The  WZ factorization can be faster than the textit{LU} factorization  because,  it performs the simultaneous evaluation of two columns or two rows. Here, we present a  method for computing the real and integer textit{WZ} and  textit{ZW} factoriz...

متن کامل

Parallel Sparse LU Factorization with Partial Pivoting on Distributed Memory Architectures

Gaussian elimination based sparse LU factorization with partial pivoting is important to many scientiic applications, but it is still an open problem to develop a high performance sparse LU code on distributed memory machines. The main diiculty is that partial pivoting operations make structures of L and U factors unpredictable beforehand. This paper presents an approach called S for paralleliz...

متن کامل

Efficient Sparse LU Factorization with Partial Pivoting on Distributed Memory Architectures

A sparse LU factorization based on Gaussian elimination with partial pivoting (GEPP) is important to many scientific applications, but it is still an open problem to develop a high performance GEPP code on distributed memory machines. The main difficulty is that partial pivoting operations dynamically change computation and nonzero fill-in structures during the elimination process. This paper p...

متن کامل

Eecient Sparse Lu Factorization with Partial Pivoting on Distributed Memory Architectures

A sparse LU factorization based on Gaussian elimination with partial pivoting (GEPP) is important to many scientiic applications, but it is still an open problem to develop a high performance GEPP code on distributed memory machines. The main diiculty is that partial pivoting operations dynamically change computation and nonzero ll-in structures during the elimination process. This paper presen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006